Incentivizing Permissionless Distributed Learning of
LLMs

Templar AT*
contact@tplr.ai

Abstract

We describe an incentive system for distributed deep learning of foundational
models where peers are rewarded for contributions. The system, templar incentive,
has been deployed on the bittensor blockchain and used to train a 1.2B LLM with
completely permissionless contributions of pseudo-gradients: no control over the
users that can register or their hardware. The templar incentive can be applied to
any synchronous distributed training scheme that relies on aggregating updates
or pseudo-gradients. We rely on a two-stage mechanism for fast filtering of peer
uptime, reliability, and synchronization, combined with the core component that
estimates the loss before and after individual pseudo-gradient contributions. We
utilized an OpenSKkill rating system to track competitiveness of pseudo-gradient
scores across time. Finally, we introduce a novel mechanism to assure peers on
the network perform unique computations. Our live 1.2B run, which has paid out
real-valued tokens to participants based on the value of their contributions, yielded
a competitive (on a per-iteration basis) 1.2B model that demonstrates the utility of
our incentive system.

1 Introduction

Training large foundational models, such as large language models (LLMs), remains dominated by
centralized actors with access to vast computational resources. However, as these models grow in
importance and influence, so does the imperative to democratize their development. Foundational
models such as LLMs are typically trained in large, well-interconnected centralized data centers,
in part due to the heavy communication costs of typical data parallel distributed learning methods.
However, recent advancements in communication-efficient distributed learning [[16, |3 [10} 1] open the
possibility to decentralize computation. This opens the door to new paradigms such as permissionless
distributed training, where anyone can contribute updates to a shared model. While recent work has
explored decentralized learning and federated learning, these approaches have not fully addressed the
challenges of incentivization and quality control in open networks. In particular, ensuring honest user
participation in such systems remains a challenge.

Recent work has considered verification of machine learning programs, including distributed training
[2] from untrusted users. However, this work on verification focuses on assuring that exact pre-
described computations have been performed. On the other hand, contributors in incentivized systems
may vary their computations (e.g., data selection or hyperparameters). Proof of Learning (PoL)
has also been proposed in [3]] and can be seen as a type of verification mechanism that attempts to
recompute the exact calculations that a learner should have performed. It avoids re-training of the
entire model by only recomputing part of the computation. Similar to verification, existing PoL. work
does not consider the case where a learner can deviate and even improve on the prescribed learning
scheme (such as using more data than specified for a gradient step).

*tplr.ai

Incentivized distributed training can be seen as a generalization of verification systems in distributed
learning. The goal is to both ensure that untrusted users provide useful computations to the system,
and to incentivize competition and innovation between users. For example, the incentive system may
encourage participants to optimize their local hardware, networking, as well as their implementation
in order to maximize throughput and utility of their contributions.

In this paper, we introduce the Templar incentive mechanism, a system designed to enable and reward
high-quality contributions in a permissionless distributed training setting. The Templar incentive
system efficiently evaluates and compares pseudo-gradient contributions from peers participating
in a distributed training run. Templar has been deployed on the Bittensor blockchain and used in
a live training run of a 1.2B parameter language model, where contributors provided compressed
pseudo-gradients without any centralized registration or approval. This model achieved competitive
performance per iteration, with the Templar protocol paying real-value tokens to participants in
proportion to the utility of their updates.

Our 1.2B model run is, to our knowledge, the first truly permissionless pre-training LLM run.
Any user with a valid internet connection is able to make a contribution without needing approval,
coordination, or identification. It demonstrates that foundational model training can be conducted in
a completely open network with minimal assumptions about trust, identity, or compute capabilities.
Our study opens the door to decentralized Al models sustained by market-driven incentives.

2 Distributed Training Framework
We consider a general synchronous distributed training scheme where a model 6 is updated as follows:

K

Op =0, — Y wily (1)
k=1

In this scheme, K distributed peers contribute "pseudo-gradients", Ay, which are aggregated and
used to perform an optimization step. We note that this is a generic framework encompassing a
number of popular data parallel distributed learning schemes [4, (13} 12} 3, [16} |14} [10]

Training proceeds in communication rounds ¢, each with a specified duration. At the end of each round,
we define a ‘put window’: a short period during which peers must publish their pseudo-gradients.
Submissions made outside this window (i.e., too early or too late) are ignored.

To implement incentivization, we consider the concept of a validator that can access any contribution
Ay, for evaluation. The validator maintains a weighting for all participants, which is periodically
posted on the public blockchain. This weighting is used to determine the amount of monetary rewards
given to participants on the network.

The instantiation of this framework that we evaluate uses the communication-efficient Decoupled
Momentum Optimizer (DeMo)[10] to produce pseudo-gradients (see Algo. 2). DeMo is a variant
of compression with error feedback methods [7, 14, |16]]. The compressor utilized by DeMo applies
a Discrete Cosine Transform (DCT) operation on chunked tensors, decorrelating the values before
applying a top-k operation. This method has been shown to achieve competitive compression ratios
on LLM training [10} [1].

3 Templar Incentive

Our incentive system is built with two phases: (a) a compute-intensive primary evaluation applied to
a small number of peers per communication round (b) a low-cost fast evaluation applied to a large
number of peers in each round. Incentives are calculated in each communication window and the
scores of each participant are updated locally by the validator. The overall behavior of peers and
validators in the system are summarized in Algorithm 1.

3.1 Primary evaluation

Loss Rating The heart of the incentive mechanism attempts to judge the value of each pseudo-
gradient contribution.

LossScore, (AY, D) = L(6;, D) — L(6; — BAY, D))

where A is the pseudo-gradient from peer p at round ¢, D is a random subset of data from the
training dataset, and (3 is a scaling factor. This essentially measures how much a peer’s contribution
decreases the loss. Naturally, poor gradients will lead to highly negative scores allowing the system
to quickly downweight malicious contributors.

Note that since an individual contribution has a higher variance than the aggregated pseudo-gradients,
the S will typically be set as a smaller value than the current learning rate. In practice, when using a
learning rate scheduler, we found it was sufficient to set 5; = ¢ * oy where ¢ < 1. Using a smaller
value also allows us to reduce the noise in the LossScore. Specifically, stepping with a too large step
size is more likely to lead to negative loss scores, and in our empirical observations inconsistent
rankings between peers.

A significant issue of loss-based scores is that they are not consistent over time; indeed, even adjacent
iterates can lead to very different scores for the same peer running the same strategy. This problem
is exacerbated by the fact that practically, the validator cannot evaluate all peers’ contributions at
each communication round. On the other hand we observed that at any given round ranking based
on LossScore correlated well with high quality contributions (e.g. peers processing more data got
better LossScore). We thus utilize a rank-based rating system OpenSkill [6] which is well suited to
estimating relative peer ranks under sparse evaluation.

In each evaluation round ¢, a random subset S of the K participating peers is chosen and ranked by
their LossScore,,. Subsequently their OpenSkill rating, LossRating ,, is updated.

Proof of Computation A key challenge in a completely open permissionless system is that peers
broadcast their pseudo-gradients to all peers on the network. This leads to several related problems
where peers can avoid performing computation while achieving positive loss scores:

» Peer Copying - A peer attempts to copy a valid pseudo-gradient uploaded by another peer
and post it before the communication period is completed.

* Duplicating Contributions - A peer attempts to register multiple times on the network and
upload identical pseudo-gradients

Our proposed solution relies on assigning a unique subset of data, DY to peer p at any given round
that must be used as part of its training data for that round. The validator then attempts to determine
if the peer has actually performed training on this data by comparing the loss score on this data to a
random subset of data (already computed as part of the Loss Rating).

tp = Yty + (1 —) * sign(LossScore, (A?, DP) — LossScore, (A?, Dr*"4)) 3)

Peers training on their assigned data DY are expected to have lower loss on this data compared to their
loss on a random data subset D;%"?. This difference tends to yield j, > 0 over time for compliant
peers. Conversely, peers neglecting DY are expected to have p,, ~ 0. The resulting y,, contributes to
the peer’s overall incentivization score, as detailed in equation {4}

Signed Descent Following [[10], we utilize the sign operation post-aggregation which provides a
number of practical benefits: (a) gradient norm control (b) ability to store the aggregation to allow
fast checkpoint catchup. Specifically checkpointing can occur infrequently while catchup can be
done through repeated application of the signed updates. For consistency the use of the sign is also
done at evaluation.

3.2 Fast Evaluation

On a larger subset of peers we perform the following low cost evaluations including basic sanity
checks and a score to estimate synchronization of the local model with the expected model on the
validator.

Basic checks We penalize peers for the following: (a) not sending their pseudo-gradient within
the specified put window. This is facilitated by our use of cloud-based storage in combination with
the blockchain time (detailed in the next section), which provides a consistent global clock. (b)
Not putting a pseudo-gradient at all (c) violating the format (e.g., submitting tensors with incorrect
dimensions or data types).

Sync Score In each communication round, peers also send a very small number of their model
parameters (2 values per tensor). The cost of this is negligible compared to the overall communication
cost. From this the validator computes a synchronization score as follows from the N communicated
parameters:

el(validator) . el(peer)

N
1
SYNCSCORE = ——
alN L:Z1

Given that pseudo-gradient updates are signed post-aggregation (effectively quantizing updates by
the learning rate «v), the Sync Sore provides a heuristic measure of how many update steps a peer’s
model diverges from the validator’s. We use a threshold for this score as a filter (in practice, setting
the threshold to 3)."

Violation of either the basic checks or the sync score constraint leads to an additional penalty:

by = 0.75 if peer p fails any fast evaluation check
P otherwise

We apply the penalty directly to p,, each time fast evaluation is performed

Bp = @ * pp
This allows to rapidly degrade the score when a peer repeatedly fails the fast evaluation, as will be
discussed in the next section it also allows the peer to be quickly removed from the aggregation.

3.3 Putting it all together

Thus, our final pre-normalized score, PEERSCORE for peer p in round ¢ is given by:

PEERSCORE!, = 1, * LossRating,, “

Finally, the scores are normalized as follows:

norm __ (PEERSCORE, — min PEERSCORE)®
b >, (PEERSCORE; — min PEERSCORE)®

&)

The validator uses these normalized scores x,°""™ to assign incentives (that sum to 1) for all peers.
These incentive values 2:,°""™ are posted by the validator to the blockchain and used to determine the
monetary reward given by the protocol to each peer. In our current design we use ¢ = 2, with the
goal to increase competition amongst peers. Indeed the non-linear incentive is designed to encourage
participants to register fewer high performing peers versus many weaker peers. For example if a user
has access to 10 GPU it is preferred they take care of optimizing their configuration to produce a
single high quality pseudo-gradient with all 10 GPU as opposed to registering 10 individual peers.

Finally, the weights w,, are used as part of the weighted aggregation in equation [T} For simplicity, in
Templar-1B, we choose to set the aggregation weight of peers in the top P to 1 and all others zero.
This serves to encourage a smaller number of high quality peers with a large amount of compute
behind them while also allowing for natural redundancy as when top peers become less reliable they
are quickly swapped out in the aggregation with other high quality peers.

1/G if 2t € Top-G
p 0 otherwise
During fast evaluation we assure that the current top G peers are included in the fast evaluation set,

such that they can be rapidly downgraded out of this set (and no longer impact the aggregation) if
they begin to fail fast evaluation.

Algorithm 1 Templar Incentive Scheme

Require: Number of peers P, validators V/, iterations 7', learning rate o, EMA decay (3
Initialize model parameters 6
Initialize generalization scores ji,, < 0 for all p
Initialize peer scores PEERSCORE,, <— 0 for all p

Peers

fort=0to7T —1do
for each peer p € {1, ..., P} in parallel do
D? + SELECTDATA (seed, p, t)
AP < PSEUDOGRADIENT(DY?, 0;)
BROADCAST(AY)
/I Local aggregation and update
w < SELECTTOPG({PEERSCORE,, }£_, G)
Ay «— AGGREGATE({AY | w, > 0})
67, | « 0, — aAXE
end for
end for

7

Validator

fort =0toT — 1do
// Evaluate a small set of peers
St < SELECTRANDOMPEERS (v) > Evaluation set, |S;| < P

/I Update scores for a larger set using filtering

F; + SELECTPEERSFORFILTERING(F)

for each peer p € F; do
¢p < FAST EVALUATION(p) > Check if Peer Passes Fast Evaluation
Bp < Op - My

end for

for each peer p € S; do
/I Evaluate on peer’s assigned data
0, < 0, — aSIGN(AY)
D? < SELECTDATA (seed, p, t)
S5« L(6y, DY) — L(6),, DY)
// Evaluate on unassigned (random) data
Diand « UNASSIGNEDDATA (p, t)
8 o (6, D{™) — L(6), Df™)
end ﬁ)r

// Rank peers in S; using generalization signal
{LossRating, },cs, <~ OPENSKILLMATCH(S}, {05"'})
for each peer p € S; do .
fip < 7 - pp + (1 —) - SIGN(55 " — grand)
PEERSCORE,, < LossRating,, - 1,

end for
/I Aggregate
w + SELECTTOPG({PEERSCORE,, }L_,, G)

A« AGGREGATE({AY | w, > 0})
Orp1 O — - AP
end for

Coordinated Aggregation Although peers can freely modify their local implementation, the
incentive mechanism pushes peers to perform the same aggregation as specified by the validator
(e.g., using the same set of peers GG specified by the validators) in order to stay synchronized to the
validator state §7/*4ator This allows the system to easily propagate various control mechanisms. For
instance, a time window for communication is specified and any pseudo-gradients arriving outside of
this time window are ignored by the validator, and thus the peers should also ignore them. Similarly,
peers are encouraged to use the peer scores w), in the same way as the validator (equation @)

Validator Consensus and Stake In a decentralized system, the evaluation of incentives must also
be decentralized. On the Bittensor blockchain, this is achieved through the use of multiple validators
who are required to provide stake—an amount of tokens placed at risk as a form of economic
commitment. Validators participate in the evaluation process and are subject to penalties for dishonest
or faulty behavior. A set of validators typically operates under the Yuma consensus protocol [[15],
which combines together the incentives x;;°"" from different validators. A full description of the

Bittensor validator and consensus mechanisms is beyond the scope of this technical reponﬂ For the
sake of simplicity in the current implementation of the protocol the highest staked validator is chosen
to provide the location of consistent checkpoints (for peers joining later or restarting) and the list of
top-G peers. However, even these can be decentralized in future iterations.

Algorithm 2 DeMo: PseudoGradient and Aggregation

Require: Current model 6, local data batch DY, momentum buffer e;, compression hyperparameters
s, k, error feedback decay 3

1: function DEMOPSEUDOGRADIENT(6;, DY, ¢;)
2 G+ + LOCALSTOCHASTICGRADIENT(6:, DY)
3 et Brer+ g > Apply error feedback
4: g: < DCTENCODE(e;) > DCT on chuncked tensors
5: G; < TOPKCOMPRESS(qs, s, k)
6: Z; < DCTDECODE(§:)

7

8

e < e — 2t > Update error feedback
: return g, > Send compressed pseudo-gradient
9: end function
10: function DEMOAGGREGATION({q}, ..., ¢~ })
11: forall ¢F do
12: qrF qugllz > Robustness to individual peers norm
13: endfor
14: Q¢ + AGGREGATECOMPRESSED({¢"}) > Weighted average of updates
15: A; + DCTDECODE(Q:) > Decode aggregated update
16: Ay + SIGN(Ay) > Apply Signum
17: return A;

18: end function

4 Byzantine fault tolerance

A challenge in permissionless systems is participants can violate the prescribed distributed algorithms
either intentionally (e.g. by pseudo-gradient poisoning or rescaling) or due to a fault. This problem in
the distributed learning literature is often referred to as byzantine fault tolerance, and problematic
participants as byzantine workers [8,[17]. In an incentivized system, peers might also inadvertently
provide faulty contributions through good faith attempts to increase their incentives.

Our incentive system can quickly reduce the weight of byzantine workers, removing them from the
aggregation. For example, peers sending poorly scaled contributions will often receive poor loss
scores, and peers that are not synchronized will be downweighted. Despite these measures, the
system remains vulnerable to risks such as: (a) peers whose malicious behavior is not detected by
the incentive mechanism, and (b) a single bad value sent before the peer can be downweighted. A

“https://docs.bittensor.com/yuma-consensus

200 Templar-1B Training curve

—— AdamW DDP
3.75 4 —— Templar-1B

3.50
3.25

3.00

Loss

2.75

250] W*'wmmmm@m

0 1000 2000 3000 4000 5000 6000
Steps

Figure 1: Templar-1B permissionless training curve, compared to a controlled AdamW baseline with
the same number of peers and the default per worker batch size.

simple example of (b) is a peer that intentionally sending a pseudo-gradient with an excessively large
magnitude, enough to disrupt the aggregation if it is included even once.

Such problems have been studied in the literature on byzantine fault tolerance in federated learning.
However, many of the more sophisticated methods for addressing this problem either introduce
significant overhead or slow down convergence [17, [11]]. Some of the more practical approaches rely
on gradient clipping [8].

In Templar-1B we rely on the sign as in [10] as a final step in the aggregation, which has been found
to help the DeMo method converge for LLMs. This naturally reduces impact of direct attacks on the
norm of the final update, but an individual peer can still dominate the aggregation by rescaling their
pseudo-gradients. We thus rely on a simple strategy of normalizing the contributions ¢} (see line
12 Algo 2.) so that each peer contributes equally. As our aggregation is done in the DCT encoded
domain, we also perform this normalization on the encoded vectors. Since we assume that each
participant is training on an i.i.d. subset of the data, we do not anticipate large variations in the
norms of valid pseudo-gradient. In practice, we observed that this approach significantly reduced the
impact of byzantine peers while having no impact on convergence in the fully cooperative (simulated)
setting.

5 Cloud-Based Communication

A novelty aspect of Templar is the use of cloud-based communication backend. Peers and validators
in the network communicate using S3-compliant storage buckets. Each peer on the network creates
their own bucket and posts the read-access keys to the blockchain, making them visible to other peers
and validators. Broadcasting Pseudo-Gradients is done by simply writing to a local bucket. This has
several advantages:

* Peer-to-peer network complexities, such as firewall configuration, are avoided.
* Pseudo-gradient contributions can be easily tracked and robustly timestamped.
* Cloud providers, such as Cloudflare, have globally distributed networks which can often

ensure competitive upload and download times for participants worldwide.

A disadvantage is that all communication must pass through the cloud provider, making the system
limited to the reliability of the cloud provider. Our incentive mechanism encourages peers to optimize
their configuration to work robustly with the cloud provider.

Loss Score Comparison

0.0030
—— Peer 2 (800K tokens/round)
Peer 3 (400K tokens/round)

000251 ___ peerg (400K tokens/round desync)

0.0020 \
0.0015

i |
| | l
bbb

0.0005

Gradient Score

0.0000

—0.0005

-0.0010
50 100 150 200 250 300 350 400

Steps

Loss Rating Comparison

—— Peer 2 (800K tokens/round)
~—— Peer 3 (400K tokens/round)
—— Peer 4 (400K tokens/round desync)

Loss Rating

0 50 100 150 200 250 300 350 400
Steps

Figure 2: Simulating how the LossScore and LossRating evolves for three peers one processing more
data and one desynchronized. We observe that variation in loss score is variable from step to step,
however relative performance is consistent and the loss rating can quickly differentiate between peers
with favorable behavior.

6 Results and Discussion

We deployed Templar to train a 1.2B model for 20K communication rounds in a completely permis-
sionless manner. The evaluation windows were set to be the same as the communication rounds. We
used the FineWebEdu dataset[9]]. Participants were provided a baseline training script, which they
could adapt to their particular configuration. The baseline script targeted approximately 400,000
tokens per peer per iteration. However, the length of a communication round was set sufficiently
long to allow more data to be processed on a single H100. We aggregated pseudo-gradients from the
G = 15 top-scoring peers in each communication round. The validators were able to evaluate and
compare 5 peers each communication round updating their LossRating and u,, score. The training
loss curve is presented in Figure[I|and compared to an AdamW baseline (with hyperparameters taken
from [[10] training with 15 peers processing 400K tokens per communication round. This represents
a comparison to a centralized training algorithm not compatible with training over the internet.
We note that, based on prior experiments, the DeMo algorithm roughly follows the convergence
dynamics of Adam. Although we cannot measure the exact amount of data each peer processed,
we observe that our convergence rate exceeds that of the Adam baseline in the first half of the run
suggesting participants were successfully incentivized to process more data or otherwise optimize
their pseudo-gradients (e.g. by tuning local hyperparameters to instantaneously improve loss).

We also compare our downstream metrics against the baseline Adam trained model and the published
results of [10], which was trained for the same number of iterations in Table[]] We see that our
downstream metrics are competitive.

Table 1: Base model evaluation results on downstream benchmarks (zero-shot). We compare to
published results of DeMo and custom training with AdamW using the same number of steps.
TEMPLAR-1B token couts are estimated as number of tokens processed by participants is not
controlled.

Model Dataset Tokens HellaSwag PIQA ARC-E
acc_norm acc_norm acc
TEMPLAR-1B FineWebEdu 100B-200B 51.0 71.4 59.2
DEMo 1B [10] Dolmo 100B 48.0 70.0 55.0
AdamW DDP 1B FineWebEdu 120B 51.0 71.9 58.9

Simulating LossRating We performed controlled simulations of the templar incentive system
focusing on identifying whether LossRating fulfills two basic properties: (a) peers training on
more data get higher rating (b) peers who deviate from the global state get downweighted. The
desynchronized peer was simulated by having the peer pause early on for 3 communication periods
(thus representing a peer who is 3 steps behind) and then continue with the deviating model. In
general our simulations showed that the LossRating can robustly detect both these scenarios, observe
in Figure 2] One peer training with 800K tokens per communication round well exceeds a peer
training with the default 400K tokens per communication round. Similarly a peer who is delayed by
several steps rapidly begins to underperform.

Synchronous Model States Simplify Validation Distributed learning methods can be broadly
categorized into those which maintain the same model on all peers and those which allow models to
diverge (e.g. asynchronous SGD, gossip-based methods). An advantage of methods that allow models
to diverge is that they can typically more easily support heterogeneous communication patterns more
easily as well as overlapping communication, on the other hand they are more challenging to debug
and work with. We have found in the context of incentivization synchronized model states are critical
for allowing the validator to easily compare the contributions of peers. In a earlier experimental
version of our system we allowed peers and validators to partially diverge, but this creates significant
issues ad differences in evaluation of the loss are challenging to attribute to model divergences
between validator and peer states. Furthermore, even in asynchronous methods, peers need to attempt
to stay tightly coupled together, thus encouraging synchronization is still important, while this is
more challenging to do without a single global reference state that can be available for the validator.

7 Conclusion

We have introduced an incentive system for distributed permissionless pre-training of LLMs. We
demonstrated that combined with a communication efficient distributed learning scheme which
encourages high quality pseudo-gradient contributions from peers participating all over the world. We
demonstrated that it can lead to effective convergence of a 1.2B model with completely permissionless
peers participating on the bittensor blockchain.

References

[1] Kwangjun Ahn and Byron Xu. Dion: A communication-efficient optimizer for large models.
arXiv preprint arXiv:2504.05295, 2025.

[2] Arasu Arun, Adam St Arnaud, Alexey Titov, Brian Wilcox, Viktor Kolobaric, Marc Brinkmann,
Oguzhan Ersoy, Ben Fielding, and Joseph Bonneau. Verde: Verification via refereed delegation
for machine learning programs. arXiv preprint arXiv:2502.19405, 2025.

[3] Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’ Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

[4] Priya Goyal, Piotr Dollér, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[5] Hengrui Jia, Mohammad Yaghini, Christopher A Choquette-Choo, Natalie Dullerud, Anvith
Thudi, Varun Chandrasekaran, and Nicolas Papernot. Proof-of-learning: Definitions and practice.
In 2021 IEEE Symposium on Security and Privacy (SP), pages 1039-1056. IEEE, 2021.

[6] Vivek Joshy. Openskill: A faster asymmetric multi-team, multiplayer rating system. arXiv
preprint arXiv:2401.05451, 2024.

[7] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pages 3252-3261. PMLR, 2019.

[8] Grigory Malinovsky, Peter Richtdrik, Samuel Horvath, and Eduard Gorbunov. Byzantine
robustness and partial participation can be achieved at once: Just clip gradient differences. arXiv
preprint arXiv:2311.14127, 2023.

[9] Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel,
Leandro Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest
text data at scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

[10] Bowen Peng, Jeffrey Quesnelle, and Diederik P Kingma. Decoupled momentum optimization.
arXiv preprint arXiv:2411.19870, 2024.

[11] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated
learning. IEEE Transactions on Signal Processing, 70:1142-1154, 2022.

[12] Xun Qian, Peter Richtérik, and Tong Zhang. Error compensated distributed sgd can be acceler-
ated. Advances in Neural Information Processing Systems, 34:30401-30413, 2021.

[13] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[14] Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsifica-
tion in distributed deep learning. arXiv preprint arXiv:1911.08772, 2019.

[15] Jacob Steeves, Ala Shaabana, Yuqgian Hu, Francois Luus, Sin Tai Liu, and Jacqueline Dawn
Tasker-Steeves. Incentivizing intelligence: The bittensor approach, 2022.

[16] Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher
Re, and Ce Zhang. Cocktailsgd: Fine-tuning foundation models over 500mbps networks. In
International Conference on Machine Learning, pages 36058-36076. PMLR, 2023.

[17] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd. arXiv
preprint arXiv:1802.10116, 2018.

10

	Introduction
	Distributed Training Framework
	Templar Incentive
	Primary evaluation
	Fast Evaluation
	Putting it all together

	Byzantine fault tolerance
	Cloud-Based Communication
	Results and Discussion
	Conclusion

